TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>3</td>
</tr>
<tr>
<td>CONTROLS AND SWITCHES</td>
<td>4</td>
</tr>
<tr>
<td>OPERATION</td>
<td>7</td>
</tr>
<tr>
<td>CIRCUIT DESCRIPTION</td>
<td>15</td>
</tr>
<tr>
<td>ALIGNMENT</td>
<td>19</td>
</tr>
<tr>
<td>RESISTANCE & VOLTAGE MEASUREMENTS</td>
<td>27</td>
</tr>
<tr>
<td>PARTS LIST</td>
<td>28</td>
</tr>
</tbody>
</table>
The model FR-101 is a solid-state communications receiver designed to provide extreme flexibility that even the most demanding amateur desires with provisions for all mode reception on twenty one 500 KHz amateur and major shortwave broadcast bands from 160 through 2 meters. The versatile FR-101 receiver is capable of transceive or independent receive and transmit function with the matching FL-101 transmitter or FT-101E/277E transceiver.

New, solid-state technology, with features such as a double-balanced mixer, offers unparalleled performance and rejection of cross-modulation and intermodulation interference. All circuits are composed of standard, computer-type, plug-in modules, for reliable operation and service simplicity. A linear tuning, temperature compensated VFO with 1 KHz frequency readability is incorporated. A 100 KHz/25 KHz crystal calibrator is built-in. The FR-101 also includes fast attack/slow release AGC for SSB or AM and fast release for CW. If desired, the AGC can be completely disabled. A built-in noise blanker with adjustable threshold control provides excellent elimination of most impulse type noise.

In addition to external VFO operation, a crystal oscillator is built-in for crystal-control operation of 4 channels of fixed frequency reception. The FR-101 includes a self-contained AC power supply - adjustable from 100/110/117/200/220/234 volt AC when the primary power transformer winding is appropriately wired.

The SP-101PB/277PB phone-patch and external speaker combination is a useful accessory for amateur operation.
SPECIFICATIONS

Frequency Range:
160m: 1.8 ~ 2.0 MHz
80: 3.5 ~ 4.0
60: 4.5 ~ 5.0*
40: 7.0 ~ 7.5
31: 9.5 ~ 10.0*
25: 11.5 ~ 12.0*
20: 14.0 ~ 14.5
19: 15.0 ~ 15.5*
16: 17.5 ~ 18.0*
15: 21.0 ~ 21.5
13: 21.5 ~ 22.0*
11: 25.5 ~ 26.0*
CB: 27.0 ~ 27.5*
10A: 28.0 ~ 28.5
10B: 28.5 ~ 29.0
10C: 29.0 ~ 29.5*
10D: 29.5 ~ 29.9*
VHF 6m: 50.0 ~ 52.0* 52.0 ~ 54.0*
VHF 2m: 144 ~ 146* 146 ~ 148*
* 1: 4.0 ~ 4.3**
* 2: 5.0 ~ 5.2**
* 3: 7.5 ~ 9.0**
* 4: 22.0 ~ 27.0**

Type of Emission:
USB, LSB, CW, AM, FM* or RTTY

Frequency Stability:
Within 100 Hz during any 30 minute period after warm-up. Not more than 100 Hz with 10% line voltage variation.

Calibration Accuracy:
1 KHz maximum after 100 KHz calibration.

Backlash:
Not more than 50 Hz.

Antenna Impedance:
50 ohm unbalanced nominal.

Power Requirement:
100/110/120/200/220/234 volt AC 50/60 Hz or 13.5 volt DC nominal.

Sensitivity:
SSB and CW...0.3 μV for 10 dB Noise plus Signal to Noise Ratio on 14 MHz.
AM.............1 μV on 14 MHz.
FM.............12 dB SINAD

Selectivity:
CW-N*...........0.6 KHz/6 dB, 1.5 KHz/60 dB
CW, SSB, RTTY, AM-N
.............2.4 KHz/6 dB, 4 KHz/60 dB
AM-W*...........6 KHz/6 dB, 12 KHz/50 dB
FM*.............20 KHz/6 dB, 45 KHz/50 dB

Harmonic & Other Spurious Response:
Image Rejection..................Better than 60 dB.
Internal Spurious Signal ... Below 1 μV equivalent to antenna input.

Automatic Gain Control:
AGC threshold nominal 1 μV.
Selectable AGC time constant, fast or slow.
Fast attack time 3 milli-second and slow attack time 4 milli-second. Fast release time 0.5 second and slow release time 2 seconds.

Audio Noise Level:
Not less than 40 dB below 1 watt.

Audio Output:
2 watts at 4 ohm impedance.

Audio Distortion:
Less than 10% at 2 watts output.

Dimensions:
340(W) × 153(H) × 285(D) mm.

Weight:
9 Kg.

*Options for FR-101 Standard Type Receiver.
**Options for FR-101 Standard and Deluxe Type Receivers.

SEMICONDUCTORS

Silicon TR:
18 x 2SC372Y, 1 x 2SC710D, 6 x 2SC735Y

FET:
8 x 2SK19GR, 3 x 3SK35, 1 x 3SK40M

IC:
1 x AN214, 1 x TA7061AP, 2 x CA3053,
1 x MC1496G, 1 x MFC6034A

Diode:
2 x 1S2236, 1 x 1S2689, 5 x WZ090, 1 x WZ0109,
1 x 1S993, 6 x 1S1553, 14 x 1S1007,
4 x 1S188FM, 4 x V06B, 2 x TLR104
INSTALLATION

GENERAL
Carefully remove the FR-101 receiver from the carton and examine it for any physical damage. Should any be apparent, notify the carrier immediately, stating the damage in detail. Save the carton and packing materials for future use.

LOCATION
In general, the location of the FR-101 is not critical, however it is recommended that excessively warm locations be avoided. The FR-101 should be placed in a location that has adequate space to permit free air circulation through the cabinet opening.

POWER REQUIREMENT
Two prewired plugs are furnished with the unit for AC or DC voltage operation. The FR-101 is supplied with a multi-voltage power transformer and can be operated in many areas of the world where voltages may differ from your local supply voltage. Therefore, before connecting the AC cord to the power outlet, be sure that the voltage marked on the rear of the receiver agrees with the local AC supply voltage.

CAUTION
PERMANENT DAMAGE WILL RESULT IF IMPROPER AC SUPPLY VOLTAGE IS APPLIED TO THE RECEIVER.

The FR-101 will operate satisfactorily from 12 volt, negative ground battery source by connecting the DC power cord to the rear panel receptacle. The receiver requires an average of 0.5 amp. When making connections to the battery, be certain that the RED lead is connected to the positive (+) and the BLACK lead to the negative (−) terminals of the battery. Reversed connection could permanently damage the receiver circuitry.

ANTENNA AND GROUND
The FR-101 is designed for use with a resonant antenna at the operating frequency and having an impedance of 50 to 75 ohms. This requirement is easily met by using a center-fed dipole antenna resonated to the receiving frequency and fed with coaxial cable. For amateur band operation, any commercially designed antenna system with an impedance of 50 to 75 ohms may be used.

If a tuned, open-wire transmission line or a long wire antenna is used, a suitable antenna tuner must be used between the receiver and antenna. For more detailed description on antennas, please refer to “The ARRL Antenna Hand Book” or “The Radio Amateur Hand Book”.

It is recommended to use the transmitting antenna when the FR-101 is used with a transmitter or a transceiver. Antenna change-over is accomplished by an antenna relay provided in our transmitters or transceivers.

The FR-101 should be connected to a good ground. The ground lead should be connected to the terminal marked GND located on the rear panel of the receiver.

SPEAKER
A 4 ohm speaker should be connected to the jack on the rear of the chassis marked SP. One lead of the speaker output is grounded to the chassis so that the one lead of the speaker should be connected as illustrated in Figure 1. Our accessory speaker model SP-101B/277B or SP-101PB/277PB provides the correct impedance match and matches in appearance with the FR-101.

HEADPHONE (4 to 8 ohm impedance)
A headphone jack is provided on the front panel for the use of a high sensitivity headphone. When a low sensitivity headphone is used, the 100 ohm resistor, R11, should be shorted for adequate volume. (Ref. to Fig. 2)

MUTE
The MUTE jack on the rear of the chassis is wired so that the receiver will operate only when the inner-conductor of this jack is shorted to ground. When the FR-101 is operated separately, and external muting is not desired, the RCA plug with shorted inner and outer conductors should be inserted into the MUTE jack. The inner-conductor should, therefore, be connected to a relay contact in the transmitter, or the transceiver, which is normally open in transmit and grounded in receive. It is recommended that a shielded wire be used for the interconnection between the transmitter or transceiver.

![Fig. 1](image)
![Fig. 2](image)
CONTROLS AND SWITCHES

The FR-101 has been specifically designed for ease of operation and versatility. All controls have been properly adjusted at the factory. Several panel controls and switches are unusual in operation, and improper adjustment may result in poor receiver performance. The function of various controls and switches is described in the following section. Be certain that you understand thoroughly the individual function of each before operating the receiver.

FRONT PANEL

1) MAIN TUNING
The MAIN TUNING knob determines the frequency which you are receiving.

2) BAND
The BAND switch is a twenty one position switch. The tunable frequency range of each band is listed in the specifications on page 2.

3) FUNCTION SWITCH
The FUNCTION switch consists of five push button switches: POWER, STBY, NB, DIGIT and CALIB.

POWER: When this switch is in the depressed position, the power transformer primary is connected to the power line for AC operation. A separate DC cable is provided for connection to a battery for DC operation.

STBY: With this switch in the depressed position, the receiver is muted.

NB: With this switch in the depressed position, the Noise Blanker is activated.

DIGIT: This switch is used on the digital readout receiver to turn off the last digit if the flicker is annoying.

CALIB: With this switch in the depressed position, the 100 KHz/25 KHz calibrator is switched on. A control is used for the calibration of the digital model only.
(4) MODE
The MODE switch is an eight position switch which determines the appropriate detector and the filter in use. In the AM position, a diode detector is incorporated and the carrier oscillator is switched off. In the CW, RTTY, and SSB (USB & LSB) positions, a ring demodulator is used as a detector with the appropriate carrier oscillator turned on. In the FM position, an (optional)FM detector unit is switched in. The appropriate filter is also automatically selected by the MODE switch.

(5) AF-RF GAIN
The AF and RF GAIN control is a concentric double-shaft potentiometer. The inner knob controls the audio output level of the receiver and the outer lever knob controls the RF and IF gain of the receiver.

(6) SELECT
This switch provides the selection of an external VFO or one of four crystal-controlled oscillator positions. Normal operation of the FR-101 requires that the switch be placed in the “INT” (Internal) position. When the switch is in the “INT” position, a red lamp marked VFO is lighted.

(7) AGC
This switch selects the AGC time constant. In the SLOW position, the AGC time constant is 0.75 second and in the FAST position, it is approximately 0.025 second. In the OFF position, AGC voltage is not generated. The SLOW position is normally used with SSB and CW, and the FAST position is normally used for break-in CW and RTTY. The OFF position may be used on CW under difficult reception conditions in conjunction with the RF Gain control.

(8) CLAR-TRANS
These controls use a concentric double-shaft potentiometer. The CLAR (Clarifier) control, the inner knob, provides a means of varying the receiver frequency a few KHz to either side of the transmitting frequency when the FR-101 is used as a companion receiver to the FL-101 or FT-101E/277E. Thus it is possible to set the pitch of the voice you are receiving to the most readable point without affecting your transmitting frequency. The CLAR control may be switched off and the receiver locked to the transmitting frequency by setting the CLAR control to the OFF position. Normally, you will want to keep the clarifier in the OFF position until the initial contact is made. The CLAR control may then be used to zero-in and correct any drift on the received signal. With the clarifier ON position, a red lamp is lighted.

The TRANS (Transceiver) control is used to coincide the receiving frequency with transmitting frequency when the FR-101 is used in conjunction with the FL-101 or FT-101E/277E. Slowly advance the MONITOR knob of the FR-101 to monitor the transmitted signal, then adjust the TRANS control for the most natural voice quality while transmitting.

(9) PRESELECTOR
The PRESELECTOR control permeability-tunes the antenna and RF coils in the receiver front-end. The scale on this control is calibrated with the wave length markings showing the correct setting for various bands. This control has two pointers - red and white. The red pointer corresponds to red band markings and the white pointer to white band markings.

(10) MONITOR-SQUELCH
The MONITOR control is used to monitor the transmitted signal when the FR-101 is used in transceive with the FL-101 transmitter or FT-101E/277E transceiver. The SQUELCH control adjusts the receiver squelch threshold sensitivity in the FM reception mode (when the optional FM detector unit is installed).

(11) VHF
The VHF switch selects the (optional) 6 meter and 2 meter VHF converters. In normal reception, this switch should be set to the HF position.

(12) RF ATT
The RF ATT (RF Attenuator) switch attenuates the incoming signal to prevent over-loading of the front-end when an extremely strong signal is present.

(13) PHONE-RECORD
PHONE and RECORD jacks are provided for private listening and recording when desired. The attenuator resistor, R11, is connected to the PHONE jack in order to use high sensitivity stereo headphones.

(14) SMETER
The SMETER indicates the relative signal strength of a received signal. It is calibrated in S-Units from S-1 to S-9 and in DB over S.

(15) BAND INDICATOR
The BAND INDICATOR automatically indicates the band in use when the BAND switch is set to the desired band.

(16) DIAL LOCK
The DIAL LOCK locks the dial for the dial calibration.
(1) **ANTENNA CONNECTOR**
Three coaxial connectors are provided for separate use on HF, 6 meter and 2 meter bands. The input impedance is approximately 50 ohms and an antenna having an impedance between 50 to 75 ohms should be used.

(2) **AUX JACK**
An AUXILIARY jack is provided for optional use and this jack is not wired internally.

(3) **MUTE JACK**
The MUTE jack is for externally muting the receiver. Shorting the center conductor to ground places the receiver in the receive mode and the FR-101 mutes when the center conductor is open from ground.

(4) **TONE JACK**
The TONE jack is for input of an external sidetone signal in CW operation.

(5) **SP JACK**
The SP jack is for a connection of 4 ohm speaker, such as our SF-101B/277B.

(6) **A. TRIP**
The receiver audio signal is brought out from the A. TRIP (Anti-Trip) jack for use in energizing the VOX circuit of a transmitter used with the FR-101, such as our FL-101 or FT-101E/277E.

(7) **VFO**
This socket is used for coupling the VFO signal of FR-101 to the FL-101 or FT-101E/277E, so that transceive operation may be obtained.

(8) **FUSE**
A 1 amp. fuse is used to protect the FR-101. For 220 volt operation, a 0.5 amp. fuse should be used.

(9) **POWER**
The POWER socket accepts AC or DC voltages. AC and DC cables are provided.

(10) **GND**
This is for a GROUND connection.
OPERATION

The receiving procedure of the FR-101 is not complicated, however cause should be exercised when tuning to insure optimum performance of the equipment. The following paragraphs describe the procedures for the operation of the receiver.

INITIAL CHECK
Before connecting the FR-101 to a power source, carefully examine for any visible damage. Check that all modules and crystals are firmly in their sockets and that controls and switches are operating normally. Be sure that the voltage specification marked on the rear panel matches the supply voltage.

FREQUENCY SELECTION
The main tuning dial has two scales for proper frequency readout and is marked in 50 KHz increments to provide a coarse setting within a given band. The white scale is for 0 to 500 KHz and a green scale is for 500 KHz to 1 MHz. The sub-dial in window is marked in 1 KHz increments and provides accurate settings of the received frequency.

The lower frequency limit of the main tuning dial is automatically illuminated in the top window of the dial escutcheon by setting the BAND switch. For example, when the BAND switch is set to 25 meter band, the top window shows 11.5 MHz as starting frequency. Therefore, the green scale is used for the frequency readout. The setting shown in the example, Figure 3, would then be 11,632.5 KHz when the BAND switch is set to 25 meter band. When the BAND switch is set to 20 meter band, the starting frequency is now 14.0 MHz. Therefore, the above setting would then be 14,132.5 KHz. The amateur bands are marked in red on the BAND switch. For VHF reception (with the optional converters), the 10 meter bands are used as a variable IF stage. Refer to the Table 1 for the correct frequency readout.

<table>
<thead>
<tr>
<th>BAND</th>
<th>HF (MHz)</th>
<th>6L (MHz)</th>
<th>6H (MHz)</th>
<th>2L (MHz)</th>
<th>2H (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>28.0</td>
<td>50.0</td>
<td>52.0</td>
<td>144.0</td>
<td>146.0</td>
</tr>
<tr>
<td>10B</td>
<td>28.5</td>
<td>50.5</td>
<td>52.5</td>
<td>144.5</td>
<td>146.5</td>
</tr>
<tr>
<td>10C</td>
<td>29.0</td>
<td>51.0</td>
<td>53.0</td>
<td>145.0</td>
<td>147.0</td>
</tr>
<tr>
<td>10D</td>
<td>29.5</td>
<td>51.5</td>
<td>53.5</td>
<td>145.5</td>
<td>147.5</td>
</tr>
</tbody>
</table>

Table 1

PRELIMINARY CONTROL SETTING
For all modes of operation, set the controls as follows:

- **POWER** OFF (push out position)
- **AGC** SLOW (push out position)
- **SELECT** INT
- **STBY** OFF (push out position)
- **NB** OFF (push out position)
- **DIGIT** OFF (push out position)
- **CALIB** OFF (push out position)
- **MODE** Desired mode
- **AF GAIN** Comfortable listening level
- **RF GAIN** Fully clockwise
- **VHF** IF
- **RF ATT** 0
- **MONITOR** Fully counter-clockwise
- **SQUELCH** Fully counter-clockwise
- **CLAR** OFF
- **TRANS** Fully counter-clockwise
- **BAND** Desired band
- **PRESELECT** Set the band mark and peak for maximum S-meter reading.

Push in the POWER switch and tune the main tuning dial for the desired signal and peak the PRESELECTOR for a maximum S-meter reading. The bandwidth of the receiver is automatically selected by the setting of the MODE switch as listed in Table 2.

If impulse type noise is experienced, push in the NB (Noise Blanker) switch. The noise blanker is an IF device which turns off the signal pass during a noise pulse. It is equally effective on all modes except the FM mode, however it will be noticed that the noise blanker works when the noise is greater than the desired signal. Due to the effect of the AGC in holding the audio output constant the noise may not appear to decrease, but a signal down in the noise will come up. It should be noted that the noise blanker functions best on noise pulses which are very short in duration and which are separated widely in time such as automobile ignition noise. For continuous noise, such as power line static,
the noise blanker will be less effective since the blanker circuit has difficulty in distinguishing the noise from the desired signal.

For VHF reception, set the VHF switch to the desired band, either 6 or 2 meters. Set the BAND switch to the 10 meter band and peak the PRESELECTOR for maximum S-meter reading. The frequency relation is listed in Table 1. When the (optional) FM unit is installed, advance the SQUELCH control slowly until the back-ground noise disappears with no signal input.

<table>
<thead>
<tr>
<th>MODE</th>
<th>BANDWIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW-N *</td>
<td>0.6 kHz/6 dB 1.5 kHz/60 dB</td>
</tr>
<tr>
<td>CW</td>
<td></td>
</tr>
<tr>
<td>RTTY**</td>
<td>2.4 kHz/6 dB 4.0 kHz/60 dB</td>
</tr>
<tr>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td></td>
</tr>
<tr>
<td>AM-N</td>
<td>6 kHz/6 dB 12 kHz/50 dB</td>
</tr>
<tr>
<td>AM-W *</td>
<td>20 kHz/6 dB 45 kHz/50 dB</td>
</tr>
</tbody>
</table>

*With optional filter for FR-101 Standard type receiver
**With optional filter for FR-101 Standard and Deluxe type receivers.

Table 2

DIAL CALIBRATION

The calibration of the main tuning dial may vary slightly from band to band due to the tolerance limits of the heterodyne crystals. Therefore, a dial calibration knob is provided on the front panel. To set the calibration on a given band and desired mode, proceed as follows:

1. Set the BAND switch and the PRESELECTOR to the desired band.
2. Set the CLAR switch to OFF position.
3. Push the CALIB switch in. A switch is located on the top of AF unit inside the cabinet that selects either the 25 kHz or 100 kHz calibrate signals. When the switch is set in the direction of front panel, a calibrate signal may be heard at 25 kHz intervals.
4. Set the 100 kHz dial in the window to the nearest 100 kHz or 25 kHz reading, then zero beat the main tuning dial against marker signal while pressing the DIAL LOCK. For AM or FM, the beat tone can not be heard. Therefore, the calibration should be made for maximum S-meter reading. Since the AM and FM filters have a wide bandwidth, the calibration should be made at the center of the passband as illustrated in Figure 4.

CRYSTAL-CONTROLLED SPOT RECEPTION

The FR-101 provides for spot frequency reception with a crystal-controlled oscillator utilized in the place of the main tuning VFO. The crystal holders accept standard HC-25/U type crystals. All crystal frequencies must fall between 8,700 to 9,200 KHz. A trimmer capacitor has been connected to each crystal for precise frequency adjustment and its adjustment range is approximately 1 KHz. The correct crystal frequency for any desired operating frequency within the band set by the BAND switch, may be determined as follows:

\[F_{\text{crystal}} = f_1 \cdot F_X \]

Where \(f_1 \) is taken from Table 3; \(F_X \) is the last 3 figures of operating frequency from which Mega-Hertz order is disregarded. When the last 3 figures are between 500 to 999 KHz, 500 KHz is subtracted from this value.

- Example 1—Find the crystal frequency for 7099 KHz in LSB mode.

From the Table 3, \(f_1 \) is 9201.5 KHz.
Therefore, \(F_{\text{crystal}} = 9201.5 \cdot F_X = 9102.5 \) KHz.

- Example 2—Find 11.750 MHz AM reception.

From the Table 3, \(f_1 \) is 9200 KHz.
Therefore, \(F_{\text{crystal}} = 9200 - (750 \cdot 500) = 8950 \) KHz.

<table>
<thead>
<tr>
<th>MODE</th>
<th>(f_1) (KHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM, FM</td>
<td>9200.0</td>
</tr>
<tr>
<td>LSB</td>
<td>9201.5</td>
</tr>
<tr>
<td>USB</td>
<td>9198.5</td>
</tr>
<tr>
<td>CW</td>
<td>9199.3</td>
</tr>
</tbody>
</table>

Table 3
AUXILIARY BAND RECEPTION

In addition to the amateur and major shortwave broadcast bands, the FR-101 may be programmed to receive four 500 KHz-wide ranges covered in Table 4.

The crystals can be ordered direct from your dealer. When ordering, be sure to specify that the crystals you desire are for auxiliary band use in the FR-101.

The PRESELECTOR tuning range is given in Figure 5. On position, the FR-101 will work properly by only inserting the crystals, however on position, TC22 must be adjusted as follows:

1. Insert the crystal in socket.
2. Set the BAND switch to position.
3. Push the CALIB switch on and tune the FR-101 to the calibrator signal.
4. Peak the PRESELECTOR.
5. Adjust TC22 for maximum S-meter reading.

Insert the crystal of the correct frequency given in the Table 4 to the corresponding crystal socket located on the right side of the chassis. The crystal socket accepts standard HC-25/U type crystals. In order to receive the desired band, the BAND switch must be set to the number corresponding to the crystal socket in which the auxiliary crystal in use is installed.

A fundamental frequency is used when the crystal frequency is lower than 28 MHz and the second harmonic when higher than 28 MHz. It should be noted that the bands covered in Table 4 work only when the appropriate auxiliary bands are used as listed in the Table.

<table>
<thead>
<tr>
<th>AUX</th>
<th>FREQ (MHz)</th>
<th>LOCAL OSC</th>
<th>RF AMP</th>
<th>MIX T103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XTAL (MHz)</td>
<td>TRIMMER</td>
<td>T101</td>
</tr>
<tr>
<td>1</td>
<td>4.0–4.5</td>
<td>10.02</td>
<td>TC25 + C38</td>
<td>T107 + C4</td>
</tr>
<tr>
<td>2</td>
<td>5.0–5.2</td>
<td>11.02</td>
<td>TC24 + C37</td>
<td>T107 + TC1 + C9</td>
</tr>
<tr>
<td>3</td>
<td>7.5–8.0</td>
<td>13.52</td>
<td>TC22 + 50P</td>
<td>TC3 + C12</td>
</tr>
<tr>
<td></td>
<td>8.0–8.5</td>
<td>14.02</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>8.5–9.0</td>
<td>14.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>22.0–22.5</td>
<td>28.02</td>
<td>C44</td>
<td>TC9</td>
</tr>
<tr>
<td></td>
<td>22.5–23.0</td>
<td>28.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>23.0–23.5</td>
<td>29.02</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>23.5–24.0</td>
<td>29.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>24.0–24.5</td>
<td>30.02</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>24.5–25.0</td>
<td>30.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>25.0–25.5</td>
<td>31.02</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>25.5–26.0</td>
<td>32.02</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>26.0–26.5</td>
<td>32.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>26.5–27.0</td>
<td>32.52</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>27.5–28.0</td>
<td>33.52</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Table 4 AUX BAND
The band not covered by Table 4 may be programmed by using the band which is already assigned to another band. The relations between the desired new band and existing band are listed in Table 5.

Example—Desired Band: 10.5 - 11.0 MHz

From the Table 5, the local crystal frequency is 16.52 MHz.

Insert this crystal into the crystal socket assigned to the 31 meter band as shown in the remarks column of Table 5. Adjust TC21 as described in 3 band adjustment. Set the BAND switch to the 31 meter band position and peak the PRESELECTOR around the scale given in Figure 5.
<table>
<thead>
<tr>
<th>FREQ</th>
<th>XTAL (MHz)</th>
<th>BAND</th>
<th>RMKS</th>
<th>FREQ</th>
<th>XTAL (MHz)</th>
<th>BAND</th>
<th>RMKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8~2.0</td>
<td>7.52</td>
<td>160</td>
<td></td>
<td>16.0~16.5</td>
<td>22.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0~2.5</td>
<td></td>
<td></td>
<td>Not covered.</td>
<td>16.5~17.0</td>
<td>22.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5~3.0</td>
<td></td>
<td></td>
<td></td>
<td>17.0~17.5</td>
<td>23.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0~3.5</td>
<td></td>
<td></td>
<td></td>
<td>17.5~18.0</td>
<td>23.52</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3.5~4.0</td>
<td>9.52</td>
<td>80</td>
<td></td>
<td>18.0~18.5</td>
<td>24.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0~4.5</td>
<td>10.02</td>
<td></td>
<td>AUX 1</td>
<td>18.5~19.0</td>
<td>24.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5~5.0</td>
<td>10.52</td>
<td>60</td>
<td></td>
<td>19.0~19.5</td>
<td>25.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0~5.5</td>
<td>11.02</td>
<td></td>
<td>AUX 2</td>
<td>19.5~20.0</td>
<td>25.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5~6.0</td>
<td></td>
<td></td>
<td>Not covered.</td>
<td>20.0~20.5</td>
<td>26.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0~6.5</td>
<td></td>
<td></td>
<td></td>
<td>20.5~21.0</td>
<td>26.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5~7.0</td>
<td></td>
<td></td>
<td></td>
<td>21.0~21.5</td>
<td>27.02</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7.0~7.5</td>
<td>13.02</td>
<td>40</td>
<td></td>
<td>21.5~22.0</td>
<td>27.52</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>7.5~8.0</td>
<td>13.52</td>
<td></td>
<td>AUX 3</td>
<td>22.0~22.5</td>
<td>28.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0~8.5</td>
<td>14.02</td>
<td></td>
<td></td>
<td>22.5~23.0</td>
<td>28.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5~9.0</td>
<td>14.52</td>
<td></td>
<td></td>
<td>23.0~23.5</td>
<td>29.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0~9.5</td>
<td>15.02</td>
<td></td>
<td></td>
<td>23.5~24.0</td>
<td>29.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5~10.0</td>
<td>15.52</td>
<td>31</td>
<td>Use 31m band.</td>
<td>24.0~24.5</td>
<td>30.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0~10.5</td>
<td>16.02</td>
<td></td>
<td>Adjust TC21.</td>
<td>24.5~25.0</td>
<td>30.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5~11.0</td>
<td>16.52</td>
<td></td>
<td></td>
<td>25.0~25.5</td>
<td>31.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0~11.5</td>
<td>17.02</td>
<td></td>
<td>Use 25m band.</td>
<td>25.5~26.0</td>
<td>31.52</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>11.5~12.0</td>
<td>17.52</td>
<td>25</td>
<td>Adjust TC20.</td>
<td>26.0~26.5</td>
<td>32.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0~12.5</td>
<td>18.02</td>
<td></td>
<td></td>
<td>26.5~27.0</td>
<td>32.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5~13.0</td>
<td>18.52</td>
<td></td>
<td></td>
<td>27.0~27.5</td>
<td>33.02</td>
<td>CB</td>
<td></td>
</tr>
<tr>
<td>13.0~13.5</td>
<td>19.02</td>
<td></td>
<td>Use 20m or 19m band.</td>
<td>27.5~28.0</td>
<td>33.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5~14.0</td>
<td>19.52</td>
<td></td>
<td>Adjust TC19 or TC27.</td>
<td>28.0~28.5</td>
<td>34.02</td>
<td>10A</td>
<td></td>
</tr>
<tr>
<td>14.0~14.5</td>
<td>20.02</td>
<td>20</td>
<td></td>
<td>28.5~29.0</td>
<td>34.52</td>
<td>10B</td>
<td></td>
</tr>
<tr>
<td>14.5~15.0</td>
<td>20.52</td>
<td></td>
<td></td>
<td>29.0~29.5</td>
<td>35.02</td>
<td>10C</td>
<td></td>
</tr>
<tr>
<td>15.0~15.5</td>
<td>21.02</td>
<td>19</td>
<td></td>
<td>29.5~30.0</td>
<td>35.52</td>
<td>10D</td>
<td></td>
</tr>
<tr>
<td>15.5~16.0</td>
<td>21.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5
TRANSCIEVE OPERATION

The FR-101 has the feature of transceive operation when it is used with our FL-101 transmitter or FT-101E/277E transceiver.

(1) FR-101-FL-101 COMBINATION

Before connecting the equipment, the interconnection cables should be prepared as illustrated in Figure 9. Install the FL-101 side by side with the FR-101 and connect them, as illustrated in Figure 6, with the cables prepared.

The switches and controls may be used as described in the preceding pages, however some of them are used particularly in transceive operation as follows:

SELECT: This switch selects the VFO (main tuning) of both transmitter and receiver as shown in Table 6. The red lamp will light up to indicate the VFO in use.

MONITOR: When the transmitting frequency coincides with the receiving frequency, the transmitted signal may be monitored by advancing this control slowly in a clockwise direction. When the monitored signal is distorted by overloading, use the RF ATTENUATOR. This control does not work for CW sidetone monitoring, since the CW sidetone must be set to the desired listening level with the controls in the transmitter section.

This control is used to coincide the frequency difference between the FR-101 and transmitter due to the tolerance limits of the various crystals. The adjustment of this control is as follows:

Set the CLAR control to OFF position. Advance the MONITOR control until your transmitting voice is heard from the FR-101 while transmitting on the same SSB mode as that of the receiver. Adjust the TRANS control for a natural voice quality. For CW operation, adjust the TRANS control for maximum S-meter reading of the monitor signal with the mode switch in the CW Narrow position, while keying the transmitter. Once the above adjustment has been done, it is not necessary to readjust the control until the band or mode in use is changed.

<table>
<thead>
<tr>
<th>SELECT SWITCH</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-101</td>
<td>FL-101</td>
</tr>
<tr>
<td>1</td>
<td>INT</td>
</tr>
<tr>
<td>2</td>
<td>EXT</td>
</tr>
<tr>
<td>3</td>
<td>EXT</td>
</tr>
<tr>
<td>4</td>
<td>EXT</td>
</tr>
</tbody>
</table>

Table 6

![FR-101 and FL-101 Diagram](image)
(2) **FR-101-FT-101E/277E COMBINATION**

Connect the FR-101 and FT-101E/277E as illustrated in Figure 7. The operation is exactly same as the FR-FL combination except the function of SELECT switch, which is shown in Table 7.

Since the first IF of FR-101 has the characteristics shown in Figure 8, the receiver sensitivity will be decreased by the same amount shown on the Figure 8 when the FR-101 and FT-101E/277E are operated on different frequencies in mode 4 of Table 7.

<table>
<thead>
<tr>
<th>SELECT SWITCH</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-101</td>
<td>FT-101E/277E</td>
</tr>
<tr>
<td>1 INT</td>
<td>INT</td>
</tr>
<tr>
<td>2 EXT</td>
<td>INT</td>
</tr>
<tr>
<td>3 EXT</td>
<td>RXEXT</td>
</tr>
<tr>
<td>4 EXT</td>
<td>TXEXT</td>
</tr>
<tr>
<td>5 EXT</td>
<td>EXT</td>
</tr>
</tbody>
</table>

Table 7

Fig. 7

Fig. 8
Fig. 9
CIRCUIT DESCRIPTION

The block diagram will provide you with the better understanding of this receiver. The FR-101 uses extensively, compact type, plug-in modules for reliable performance and ease of maintenance. These modules are: Noise Blanker/Mixer Unit, IF Unit, Audio Calibrator Unit, BFO/Regulator Unit, and (optional) VHF Converter Unit. The RF Unit is assembled in the BAND switch/PRESELECTOR combination board on the chassis.

Fig. 10

SIGNAL FLOW

The signal from the antenna is fed to an antenna coil through the IF trap coil, RF attenuator and VHF/IF selector switch. The antenna coils consist of two permeability tuned coils, T101 and T102. The T104, T105, T107 and T108 are connected in series with T101 and T102 by the BAND switch in order to obtain a proper L/C ratio on lower bands. The signal is then fed to the gate of the FET RF amplifier, Q1, 2SK35. The amplified signal is then coupled through T103 to the first mixer, Q2, 3SK35, where the incoming signal is mixed with a signal from the heterodyne oscillator, Q1, 2SC372Y. T106 and T109 are connected in series with T103 to increase the inductance of T103 at lower band settings of the BAND switch. The relation between the coils and tuning capacitors in RF tuning circuit is shown in Table 8.

The product of the first mixer becomes first IF signal of 5,520 through 6,620 KHz. The first mixer converts the incoming signal to the first IF signal which is applied to the second mixer, Q1, MC1496G, through the tunable first IF transformers formed by T111, T112, and T113. The variable capacitor in the VFO unit is ganged to the tuning capacitor, VC1, in the first IF stage, by means of a mechanical gear assembly. The tuning of the first IF stages provides sharp selectivity. The second mixer, Q1, MC1496G, converts the first IF signal into a second IF signal of 3,180 KHz in a balanced mixer configuration which greatly reduces spurious responses. The VFO signal, which varies between 8,700 and 9,200 KHz, is generated by Q1, 2SK19GR, amplified by Q2, 2SK19GR, and supplied to the second mixer through the buffer amplifier, Q3, 2SC372Y. The VFO output signal is fed to the EXT VFO jack through the SELECT switch and the buffer amplifier, Q1, 2SC375Y, for transceiver operation with the accompanying transmitter or receiver.

The output signal from the second mixer is fed through T114 to a first crystal filter, XF30D, which is tuned to the second IF frequency and has +10 KHz passband response to eliminate interference. The signal is then amplified by the second IF amplifier, Q5 and Q8, 2SK19GR, and fed to the IF unit from pin 18 through T117. D8 through D15, 1S1007, are diode switches which automatically select the appropriate crystal filter for the mode in use. The voltage for the diode switches is controlled by the MODE switch. The signal from the
crystal filter is amplified through Q4 and Q5, CA3053, and fed to the appropriate detector.

The ring demodulator, D1 through D4, 1S1007, is used for the detection of SSB, CW, and RTTY signals. The carrier signal for SSB and the beat frequency signal for CW and RTTY, which is generated by the carrier oscillator Q1, Q2, and Q3, 2SC372Y, in the Regulator and BFO Unit, is fed to the ring demodulator through a buffer amplifier, Q1, 2SC372Y. The ring demodulator is balanced by VR1 for minimum distortion. The carrier oscillator oscillates either at 3,177.45 KHz, 3,181.50 KHz or 3,178.50 KHz, depending upon whether Q1, Q2 or Q3, 2SC372Y, is selected by the MODE switch. The MODE switch disconnects the emitter circuit of either transistor when not in use. The relation between the mode of received signal and carrier frequency is shown on Table 9.

<table>
<thead>
<tr>
<th>BAND</th>
<th>FREQ (MHz)</th>
<th>LOCAL OSC</th>
<th>TRIMMER</th>
<th>RF AMP</th>
<th>MIXER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>XTAL (MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1.8~2.0</td>
<td>7.52</td>
<td>TC26+X39</td>
<td>T104+X3</td>
<td>T106+X3</td>
</tr>
<tr>
<td>80</td>
<td>3.5~4.5</td>
<td>9.52</td>
<td>TC25+X43</td>
<td>T107+X4</td>
<td>T108+X4</td>
</tr>
<tr>
<td>60</td>
<td>4.5~5.5</td>
<td>10.52</td>
<td>TC24+X47</td>
<td>T107+X4</td>
<td>T108+X4</td>
</tr>
<tr>
<td>40</td>
<td>7.0~7.5</td>
<td>13.02</td>
<td>TC23+X56</td>
<td>T107+X4</td>
<td>T108+X4</td>
</tr>
<tr>
<td>31</td>
<td>9.5~10.0</td>
<td>15.52</td>
<td>TC21+X55</td>
<td>T107+X4</td>
<td>T108+X4</td>
</tr>
<tr>
<td>25</td>
<td>11.5~12.0</td>
<td>17.52</td>
<td>TC20+X4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>20</td>
<td>14.0~14.5</td>
<td>20.02</td>
<td>TC19+X3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>19</td>
<td>15.0~15.5</td>
<td>21.02</td>
<td>TC27+X4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>16</td>
<td>17.5~18.0</td>
<td>23.52</td>
<td>TC18+X32</td>
<td>TC7+X4</td>
<td>TC7+X4</td>
</tr>
<tr>
<td>15</td>
<td>21.0~21.5</td>
<td>27.02</td>
<td>TC17+X4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>13</td>
<td>21.5~22.0</td>
<td>27.52</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>25.5~26.0</td>
<td>31.52</td>
<td>C44</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>CB</td>
<td>27.0~27.5</td>
<td>33.02</td>
<td>"</td>
<td>TC9+X4</td>
<td>TC9+X4</td>
</tr>
<tr>
<td>10A</td>
<td>28.0~28.5</td>
<td>34.02</td>
<td>"</td>
<td>TC10+X4</td>
<td>TC10+X4</td>
</tr>
<tr>
<td>10B</td>
<td>28.5~29.0</td>
<td>34.52</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10C</td>
<td>29.0~29.5</td>
<td>35.02</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10D</td>
<td>29.5~30.0</td>
<td>35.52</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Table 8

An AM signal is detected by D5, 1S1007. An FM signal is fed to a limiter amplifier, Q6, TA7061AP, in an (optional) FM detector unit through C13 and Pin 1. The output from Q6 is then fed to the FM detector consisting of D1 and D2, 1S188FM. The detected audio signal is amplified by Q1, 2SC372Y, and fed to the audio amplifier unit through the MODE switch. The squelch circuit consists of a noise amplifier, Q4 and Q5, 2SC372Y, a rectifier, D3 and D4, 1S188FM, and Schmitz trigger circuit, Q2 and Q3, 2SC372Y. The noise produced at the output of the FM detector is amplified by noise amplifier, Q4 and Q5, which is tuned to approximately 35 KHz and rectified by D1 and D2. The rectified DC voltage is fed to the Schmitz circuit through the SQUELCH threshold control on the front panel. The Schmitz circuit cuts off the audio amplifier, Q1, in the absence of an incoming RF carrier, and thus speaker noise is eliminated. The audio output signals from the detectors are fed to the audio amplifier integrated circuit, Q5, AN214, through the MODE switch and the AF GAIN potentiometer. The audio amplifier circuit utilizes a OTL (Output Transformer-Less) circuit and delivers 3 watts to the speaker.
AGC & S-METER CIRCUIT

The output signal from the last IF amplifier, Q4, is fed to the AGC (Automatic Gain Control) rectifiers, D6 and D7, 1S1555, through C14. The rectified AGC voltage is then amplified by a DC amplifier, Q2 and Q3, 2SC372Y. The AGC voltage automatically controls the gain of the RF amplifier, Q1, 3SK39Q, the second IF amplifier, Q5, CA3053, and the (optional) VHF converters. The S-meter is placed in the emitter circuit of the AGC amplifier, Q3, in which the emitter current changes in accordance with the signal strength.

NOISE BLANKER CIRCUIT

A part of the second IF signal is fed to the noise amplifier, Q3 and Q4, 2SC372Y, and rectified by D3 and D4, 1S1555, to obtain a reference voltage for the noise blanker rectifier.

When the noise pulses exceed this reference voltage, D2, 1S1555, produces a negative voltage which is applied to the gate of Q6, 2SK19GR, causing a rise in drain voltage. This voltage causes Q7, 2SC372Y, to stop conducting and its collector voltage to rise D1, 1S1555, starts to conduct, shorting the output voltage of T117 to ground, when a strong noise pulse is present.

FIX CHANNEL CIRCUIT

A FET, Q1, 2SK19GR, crystal-controlled oscillator, produces the second mixer injection signal. Four crystals may be selected by the SELECT switch on the front panel. The output signal is fed to the second mixer through L101. The clarifier control on the front panel varies the voltage on a varicap diode, D1, 1S2236, resulting in a slight change of oscillating frequency to compensate for crystal frequency tolerance.

POWER SUPPLY & VOLTAGE REGULATOR CIRCUIT

The power supply is designed to operate from either 100/110/117/200/220/234 volt AC 50/60 Hz or 12 volt DC (negative ground). Inserting the appropriate power plug into the rear panel receptacle makes the necessary connection to operate the supply in either AC or DC. For AC operation, +14.5 volts is supplied from bridge connected rectifier diodes, D3 through D6. The DC voltage from this rectifier is supplied to the voltage regulator, Q4, MFC 6033 (~34A) to obtain an extremely stable 6 volt DC supply which is then fed to the various circuits. The digital readout receiver is designed for AC operation only.

CALIBRATOR CIRCUIT

Crystal-controlled oscillator, Q1, 2SC735Y, on the AF board, oscillates at 100 KHz for calibration purpose. A trimmer capacitor, TC1, is used to calibrate 100 KHz crystal frequency against WWV or JJJ. The output from this oscillator is fed into a 25 KHz multivibrator, Q2 and Q3, 2SC735Y, which generates a marker signal every 25 KHz. The switch on the printed board disables the 25 KHz multivibrator. The calibrator output signal is fed to the receiver antenna circuit through a buffer amplifier, Q4, 2SC735Y.

CLARIFIER CIRCUIT

A control voltage is applied to a varactor diode, D1, 1S2236, through a relay contact and the clarifier switch, to shift the VFO frequency for receiver offset tuning. This voltage is also used to shift the frequency of the FIX crystals.

When the clarifier switch is ON, the control voltage is applied through R28, VR2a, S7a, and a relay contact to the varactor diode. When the clarifier is OFF or in transceive, the control voltage is applied through R28, VR3, S7a, and a relay contact to the varactor diode.

Fig. 11 Clarifier Circuit
VHF CONVERTERS

(1) 6 METER CONVERTER
A 6 meter signal from the antenna input jack is fed to a MOS FET RF amplifier, Q1, 3SK35, through passband transformers, T601 and T602. The amplified signal is then fed through interstage transformers, T603 and T604, to a gate of mixer, Q3, 2SK19GR, where the incoming signal is mixed with a heterodyne signal delivered from a crystal oscillator, Q2, 2SC372Y, producing a 28 MHz through 30 MHz IF signal. The crystal oscillator, Q2, generates a 22 MHz or 24 MHz signal to cover the entire 6 meter band. Crystals, X1 and X2, are selected by the diode switch. The IF signal is fed through T607 and the VHF switch to the input circuit of the FR-101.

(2) 2 METER CONVERTER
A 2 meter signal from the antenna input jack is fed to a MOS FET RF amplifier, Q1, 3SK35, through T201. The amplified signal is then fed through slt-resonators, T202 - T206, to a gate of mixer, Q2, 2SK19GR, where the through T206, to a gate of mixer, Q2, 2SK19GR, where the incoming signal is mixed with a heterodyne signal through 30 MHz IF signal. The crystal oscillator, Q3, 2SC372Y, generates a 38.666 MHz or 39.333 MHz signal which is multiplied to 116 MHz or 118 MHz by a diode tripler, D2, 1S1555. This heterodyne signal is fed to a mixer through a buffer amplifier, Q4, 2SC710D. The IF signal from the mixer is fed to the input circuit of the FR-101 through T207 and the VHF switch.

NOTE: The earlier model has one crystal and covers 2 MHz range.

NOTE: RTTY RECEPTION
Since 170 Hz shift is commonly used in recent RTTY operation, the following modification may be recommended so as to use the 600 Hz CW filter in the RTTY reception.

MJ-6 BFO/REG Unit Socket
Remove a white/yellow wire from pin 6 of the MJ-6 and solder this white/yellow wire to pin 4 of the MJ-6.

MODE Switch (S3C wafer)
Disconnect a jumper wire between pin 5 and 6. Connect pin 5 to 7 with a jumper wire. Connect pin 6 to 8 with a jumper wire.
GENERAL
The FR-101 has been carefully aligned and tested at the factory before shipment and, with normal usage, it should not require other than the usual attention given to any electronic equipment. Service or replacement of major component may require substantial realignment, but, under no circumstances, should realignment be attempted unless the operation of the receiver is fully understood and the malfunction has been fully analyzed and traced to misalignment. Service work should only be performed by experienced personnel using proper test equipment.

RF UNIT, PB-1225

(1) Oscillator Transformer, T110
 a. Connect the RF probe of a VTVM to the junction point between C27 and R11 (first local input).
 b. Set the BAND switch to the 11 meter band (10A band for FR-101 in which the 11 meter band is not installed).
 c. Adjust the slug of T110 for maximum VTVM reading.
 d. Check the VTVM reading when the BAND switch position is changed between 11 through to 10D. If the VTVM reading varies with the different BAND switch position, adjust T110 until the same reading is obtained through the 11 to 10D positions.

(2) Trimmer Capacitors, TC17 thru TC26
These trimmer capacitors are tuning capacitors for T110.
 a. Set the BAND switch to the 15 meter band.
 b. Peak TC17 for maximum VTVM reading.
 c. Slowly turn TC17 in direction of decreasing capacitance and set it to the point where the VTVM reading is 90% of the peak reading. (Refer to Figure 13.)
 d. Repeat the above procedures for the other bands as shown in Table 10.

Fig. 13 Minimum Maximum

Table 10

<table>
<thead>
<tr>
<th>STEP</th>
<th>BAND</th>
<th>TRIMMER</th>
<th>OUTPUT VOLTAGE (V)</th>
<th>CHECK BAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td>2.0</td>
<td>11~10D</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>TC17</td>
<td>"</td>
<td>15~13</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>TC18</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>TC27</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>TC19</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>TC20</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>TC21</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>TC23</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>TC24</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>TC25</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>160</td>
<td>TC26</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
(3) Preselector and Associated Trimmers

A standard signal generator is required for this alignment. When a signal generator is not available, use the calibrator signal with the antenna terminal terminated with 50 ohm resistor. Connect the signal generator output to the antenna terminal marked IF. It is recommended to adjust the output level of the signal generator for an S-6 reading on the S-meter with the RF GAIN control at a fully clockwise position to avoid saturation during the following alignment.

Set the white pointer of the PRESELECTOR knob to 4.1 on the unity scale. Adjust the slugs of T101, T102 and T103 until the head of the slugs come to same level as the head of the coil bobbins.

Step 1, 2 and 3

Set the BAND switch to 10D, main tuning dial to 0 on the green scale (30 MHz) and the red pointer of PRESELECTOR to 3.3 on the unity scale. Set the signal generator to 30MHz and tune the FR-101 in with the main tuning dial. Adjust TC9, TC10 and TC15 for maximum S-meter reading.

Step 4, 5 and 6

Set the BAND switch to 10A, main tuning dial to 0 on the white scale, the red pointer of PRESELECTOR to 2.8 on the unity scale. Set the signal generator to 38 MHz and tune the FR-101 in. Adjust the slugs of T101, T102 and T103 for maximum S-meter reading.

Step 7

Repeat step 1 through step 6.

Step 8 thru 25

Perform as shown in Table 11 and as described above.

<table>
<thead>
<tr>
<th>STEP</th>
<th>BAND</th>
<th>DIAL</th>
<th>PRESELECT</th>
<th>CAPACITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10D</td>
<td>G 000</td>
<td>R 3.3</td>
<td>TC9</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC10</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC15</td>
</tr>
<tr>
<td>4</td>
<td>10A</td>
<td>W 000</td>
<td>R 2.8</td>
<td>T101</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T102</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T103</td>
</tr>
<tr>
<td>7</td>
<td>Repeat procedures 1 ~ 6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>G 900</td>
<td>R 10</td>
<td>T104</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T105</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T106</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>G 750</td>
<td>R 9.1</td>
<td>T107</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T108</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>T109</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
<td>W 4.5</td>
<td></td>
<td>TC1</td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC2</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC11</td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>W 250</td>
<td>R 1.3</td>
<td>TC3</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC4</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC12</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>"</td>
<td>W 9</td>
<td>TC5</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC6</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC13</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>G 750</td>
<td>W 7.7</td>
<td>TC7</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC8</td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>TC14</td>
</tr>
</tbody>
</table>

Table 11

BANDPASS IF UNIT, PB-1396

a. Set the BAND switch to the 20 meter position and the CALIB switch ON. Tune the FR-101 to a 14.250 KHz calibrator signal.

b. Peak T111, T112 and T113 for maximum S-meter reading.
NOISE BLANKER & MIXER UNIT, PB-1252

(1) T114, T117 and T118
Set the FR-101 as described in the above procedure of PB-1396, and peak T114, T117 and T118 for maximum S-meter reading.

(2) T116
Connect the plus lead of VTVM to test point marked TP in Figure 14 and the minus lead to ground. Set the AGC switch to the OFF position and tune the FR-101 as above Step (1). Peak T116 for maximum VTVM reading.

(3) VR1
This potentiometer may be adjusted when the FR-101 is used in transceive operation in conjunction with our FT-101E/277E transceiver.
 b. Set the MODE switch of FT-101E/277E to TUNE position and the BAND switch to 40 and tune the transmitter at 7,100 KHz for maximum output into a dummy load.
 c. Set the BAND switch of the FR-101 to the 80 meter position and the MODE switch to SSB (LSB or USB) position. Advance the MONITOR control until a beat can be heard while the FT-101E/277E is transmitting as described in Step (b).
 d. Adjust VR1 for minimum beat note.

IF UNIT, PB-1251

(1) T119 and T120
Peak T119 and T120 for maximum S-meter reading as described in the T114 adjustment.

(2) VR1
Disconnect the antenna from the antenna jack. Set the MODE switch to USB position and adjust VR1 for minimum S-meter reading. Then set the MODE switch to LSB position and adjust VR1 for minimum S-meter reading. Repeat these procedures for minimum S-meter reading at both USB and LSB positions.

(3) VR2
Connect the signal generator to the antenna jack of FR-101 and set the frequency to 14,250 KHz with an output level of 0.1 volt. Tune the FR-101 to the signal generator. Peak the PRESELECTOR and set the RF GAIN control fully clockwise. Adjust VR2 for S-9 +60 dB S-meter reading.
AF UNIT, PB-1268

(1) VR1
Adjust VR1 until the 25 KHz multivibrator locks in and the 25 KHz calibrator signal can be heard at every 25 KHz.

(2) VR2
Adjust VR2 for comfortable listening level of the sidetone signal when the FR-101 is used with FT-101E/277E in transceive operation.

(3) TC1
Receive WWV or JJY signal on AM Narrow mode and adjust TC1 for zero beat against 100 KHz calibrator signal.

REGULATOR & BEAT FREQUENCY OSCILLATOR UNIT, PB-1312

(1) TC1
Connect a frequency counter to Pin 7 of MJ-6 and adjust TC1 until the frequency of the RTTY oscillator becomes exactly 3,177.45 KHz.

(2) TC2
Adjust TC2 exactly to 3,181.5 KHz as described in (1).

(3) TC3
Adjust TC3 exactly to 3,178.5 KHz as described in (1).

(4) VR1
Connect the VTVM between Pin 14 of MJ-6 and ground and adjust VR1 for 6 volt VTVM reading.
VFO UNIT, PB-1307

(1) TC1
Connect the frequency counter to the output terminal of the VFO unit. Set the main tuning dial to 14,000 KHz, i.e. the white scale to zero and subdial to zero. Adjust TC1 for 9,200 KHz.

(2) TC2
This trimmer capacitor is used to adjust the temperature compensation. At the setting illustrated in Figure 18, the oscillator frequency decreases with a temperature rise, and at the setting of Figure 19, the oscillator frequency rises with a temperature rise.
VFO BUFFER UNIT, PB-1310

(1) L102
Another receiver is required for this alignment to monitor the spurious signal.
a. Connect the FR-101 and FT-101E/277E as illustrated in Figure 7.
b. Connect a dummy load to the antenna jack of the FT-101E/277E.
c. Set the SELECT switches of the FR-101 and FT-101E/277E to the EXT position.
d. Set the BAND switches of the FR-101 and FT-101E/277E to the 15 meter band.
e. Tune the FR-101 to 21.2 MHz.
f. Tune the FT-101E/277E to maximum power output with the MODE switch at the TUNE position.
g. Tune the test receiver to the spurious signal which can be heard around 21.22 MHz and adjust L102 for a minimum S-meter reading at the test receiver.

FIX UNIT, PB-1311

(1) L101
a. Connect the RF probe of a VTVM to the output terminal.
b. Insert a crystal(s) in a crystal socket(s) and set the SELECT switch to the channel where the crystal is installed.
c. Peak L101 for a maximum VTVM reading and then rotate the slug of L101 1/4 turn counter-clockwise.

(2) TC1 thru TC4
Adjust TC1 through TC4 to compensate for the crystal tolerance.

IF TRAP COIL, (A) PB-1309 & (B) PB-1309

(1) T123
a. Set the BAND switch to the 40 meter band and the red pointer of the PRESELECTOR to 10 on the unity scale.
b. Connect the signal generator and set its frequency to 5.900 KHz with an output level of 60 dB.
c. Locate this signal with main tuning knob and adjust T123 for minimum S-meter reading.

(2) T124
This trap coil functions when the FR-101 is in transceive operation. Adjust T124 for a minimum beat tone as described in the VR1 adjustment of the Noise Blanker and Mixer Unit alignment. Adjust the VR1 and T124 alternately for a minimum beat note.

FM UNIT, PB-1269

(1) T301 and T302
a. Connect the DC probe of a VTVM to the test point shown as TP in Figure 22.
b. Set the BAND switch to 20 meter, the MODE switch to AM, and the CALIB switch to ON.
c. Tune the FR-101 to the calibrator signal and then turn the MODE switch to the FM position.
d. Peak T302 for maximum VTVM reading. When the VTVM reading shows a minus direction, reverse the polarity of the VTVM.
e. Adjust T301 for a zero VTVM reading.

Fig. 21

Fig. 22 FM UNIT
6 METER CONVERTER UNIT, PB-1305A

(1) T611, T612, T613 and T614
It is not recommended to align these coils, as special measuring instruments are required for this alignment.

(2) T615 and T616
a. Connect the RF probe of a VTVM to the output terminal of T616.
b. Peak T615 for a maximum VTVM reading. Then turn the slug ¼ turn counter-clockwise.
c. Peak T616 for a maximum VTVM reading. When the oscillation stops with the alignment of T619, realign T218 for a stable oscillation.

(3) T617 and T618
Receive a 51 MHz signal and peak T617 and T618 for a maximum S-meter reading.

2 METER CONVERTER UNIT, PB-1306A

(1) T211, T212, T213, T214 and T215
It is not recommended to align these coils, as special measuring instruments are required for this alignment.

(2) T218, T219, and T220
a. Connect the RF probe of a VTVM to the output terminal of T220.
b. Peak T218 for a maximum VTVM reading. Then turn the slug ¼ turn counter-clockwise.
c. Peak T219 and T220 for a maximum VTVM reading. When the oscillation stops with the alignment of T219, realign T218 for a stable oscillation.

(3) T216 and T217
Receive a 145 MHz signal and peak T217 for a maximum S-meter reading.

MAIN CHASSIS

(1) VR3
a. Set the BAND switch to 20, the MODE switch to USB, the CALIB switch to CN and the CLARIFIER to zero. Zero beat the FR-101 against the calibrator signal with the main tuning dial.
b. Set the CLARIFIER to the OFF position and adjust VR3 for a zero beat.

(2) VR5
Adjust VR5 for optimum performance of noise blaneker. Too high of a setting of this control may cause cross modulation.
RESISTANCE & VOLTAGE MEASUREMENTS

<table>
<thead>
<tr>
<th>PIN</th>
<th>RESISTANCE (Ω)</th>
<th>VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800 800 ∞</td>
<td>9 9 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 E E E E</td>
<td>0 0 E E E E</td>
</tr>
<tr>
<td>3</td>
<td>E E E E 20 E 2.6 E</td>
<td>E E E E 13.5 E 0.5 0</td>
</tr>
<tr>
<td>4</td>
<td>E E E E 4K 1.8K 2.7K NC</td>
<td>E E E E 2 13.5 0.5 NC</td>
</tr>
<tr>
<td>5</td>
<td>E E ∞ 50K 1.8K 24 1.6K</td>
<td>E E 0 0 0 13.5 6 13.5</td>
</tr>
<tr>
<td>6</td>
<td>E E 900 E E 0 0 5K</td>
<td>E E 0 E E 0 0</td>
</tr>
<tr>
<td>7</td>
<td>E E E E 1.7M 1.8K 4K 20</td>
<td>E E E E 0 13.5 2 14.5</td>
</tr>
<tr>
<td>8</td>
<td>0 0 0 E ∞ ∞ 20 E E</td>
<td>0 0 E 0 0 13.6 E E</td>
</tr>
<tr>
<td>9</td>
<td>0 0 900 0 E E E E</td>
<td>0 0 0 0 E E E E</td>
</tr>
<tr>
<td>10</td>
<td>20 20 ∞ E E 0 NC E</td>
<td>13.5 13.5 0 E E 0 NC E</td>
</tr>
<tr>
<td>11</td>
<td>20 E 4 1K</td>
<td>13.5 E AC 12 0</td>
</tr>
<tr>
<td>12</td>
<td>600 E 12 0</td>
<td>13.5 E AC 11 0</td>
</tr>
<tr>
<td>13</td>
<td>4K 20 NC E</td>
<td>3.2 13.5 NC E</td>
</tr>
<tr>
<td>14</td>
<td>4K 800 24 E</td>
<td>3.2 9 6 E</td>
</tr>
<tr>
<td>15</td>
<td>4K 800 12</td>
<td>3.2 9 AC 12</td>
</tr>
<tr>
<td>16</td>
<td>0 95 12</td>
<td>0 0 0 AC 12</td>
</tr>
<tr>
<td>17</td>
<td>0 E 20</td>
<td>0 E 14.5</td>
</tr>
<tr>
<td>18</td>
<td>0 E E</td>
<td>0 E E</td>
</tr>
<tr>
<td>19</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>13.5</td>
</tr>
<tr>
<td>21</td>
<td>100K</td>
<td>13.5</td>
</tr>
<tr>
<td>22</td>
<td>100K</td>
<td>13.5</td>
</tr>
</tbody>
</table>

The value may vary with the polarity of test lead. Above chart shows the higher values.

MODE: USB
Measured with VTVM.

Table 12
PARTS LIST

<table>
<thead>
<tr>
<th>MAIN CHASSIS</th>
<th>MJ-MULTI JACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-TRANSISTOR</td>
<td>1-3.56</td>
</tr>
<tr>
<td>1</td>
<td>2SC735Y</td>
</tr>
<tr>
<td>7</td>
<td>14P</td>
</tr>
<tr>
<td>5a,6</td>
<td>18P</td>
</tr>
<tr>
<td>D-DIODE</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>Ge, 1S1007</td>
</tr>
<tr>
<td>4</td>
<td>Zener, WZ061</td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td>PL-PILOT LAMP</td>
</tr>
<tr>
<td>5,6</td>
<td>56Ω</td>
</tr>
<tr>
<td>1</td>
<td>75Ω</td>
</tr>
<tr>
<td>2,3</td>
<td>100Ω</td>
</tr>
<tr>
<td>4,9</td>
<td>220Ω</td>
</tr>
<tr>
<td>19</td>
<td>470Ω</td>
</tr>
<tr>
<td>R31</td>
<td>560Ω</td>
</tr>
<tr>
<td>10,14</td>
<td>1KΩ</td>
</tr>
<tr>
<td>15,18</td>
<td>2.2KΩ</td>
</tr>
<tr>
<td>8,30</td>
<td>3.3KΩ</td>
</tr>
<tr>
<td>20</td>
<td>8.2KΩ</td>
</tr>
<tr>
<td>21</td>
<td>22KΩ</td>
</tr>
<tr>
<td>12,20</td>
<td>10Ω</td>
</tr>
<tr>
<td>11,25</td>
<td>100Ω</td>
</tr>
<tr>
<td>17</td>
<td>56KΩ</td>
</tr>
<tr>
<td>32</td>
<td>1W, 22Ω</td>
</tr>
<tr>
<td>16</td>
<td>1W</td>
</tr>
<tr>
<td>VR-POTENTIOMETER</td>
<td>EVK-A2AR 03-339</td>
</tr>
<tr>
<td>1</td>
<td>HC-25/U, 7.52MHz</td>
</tr>
<tr>
<td>2</td>
<td>HC-25/U, 9.52MHz</td>
</tr>
<tr>
<td>3,5</td>
<td>EVK-D0AS15-601</td>
</tr>
<tr>
<td>4</td>
<td>1225 (A-Z) RF BOARD</td>
</tr>
<tr>
<td>5</td>
<td>Varactor, 1S2858</td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>X-CRYSTAL</td>
</tr>
<tr>
<td>DIPPED MICA</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>100Ω</td>
</tr>
<tr>
<td>15</td>
<td>10KΩ</td>
</tr>
<tr>
<td>17</td>
<td>100Ω</td>
</tr>
<tr>
<td>10</td>
<td>500W</td>
</tr>
<tr>
<td>16</td>
<td>0.01μF</td>
</tr>
<tr>
<td>19</td>
<td>0.047μF</td>
</tr>
<tr>
<td>20</td>
<td>0.0047μF</td>
</tr>
<tr>
<td>21</td>
<td>0.05μF</td>
</tr>
<tr>
<td>4,7</td>
<td>1.4KV</td>
</tr>
<tr>
<td>5</td>
<td>500W</td>
</tr>
<tr>
<td>8</td>
<td>16W</td>
</tr>
<tr>
<td>9</td>
<td>16W</td>
</tr>
<tr>
<td>10</td>
<td>100μF</td>
</tr>
<tr>
<td>11</td>
<td>180Ω</td>
</tr>
<tr>
<td>12</td>
<td>15KΩ</td>
</tr>
<tr>
<td>13</td>
<td>33KΩ</td>
</tr>
<tr>
<td>L-INDUCTOR</td>
<td>RFC</td>
</tr>
<tr>
<td>1,2,3</td>
<td>250μH</td>
</tr>
<tr>
<td>16</td>
<td>500WV</td>
</tr>
<tr>
<td>20</td>
<td>C-CAPACITOR</td>
</tr>
<tr>
<td>DIPPED MICA</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>500W</td>
</tr>
<tr>
<td>18</td>
<td>500W</td>
</tr>
<tr>
<td>20</td>
<td>500W</td>
</tr>
<tr>
<td>22</td>
<td>500W</td>
</tr>
<tr>
<td>S-SWITCH</td>
<td>330P</td>
</tr>
<tr>
<td>1</td>
<td>1-4-3</td>
</tr>
<tr>
<td>3</td>
<td>15.17</td>
</tr>
<tr>
<td>4</td>
<td>3-6-8</td>
</tr>
<tr>
<td>5</td>
<td>3-6-8</td>
</tr>
<tr>
<td>J-JACK</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3</td>
<td>1.2-3</td>
</tr>
<tr>
<td>4</td>
<td>SG-7814</td>
</tr>
<tr>
<td>5</td>
<td>SG-7615</td>
</tr>
<tr>
<td>6-9,11</td>
<td>SN-7017</td>
</tr>
<tr>
<td>10</td>
<td>ST-6403-1</td>
</tr>
<tr>
<td>12</td>
<td>QMS-AB4N</td>
</tr>
<tr>
<td>Component</td>
<td>Type</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1 3.19</td>
<td>500WV</td>
</tr>
<tr>
<td>CERAMIC DISC</td>
<td></td>
</tr>
<tr>
<td>25,26,30,40,45</td>
<td>50WV</td>
</tr>
<tr>
<td>ELECTROLYTIC</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>16WV</td>
</tr>
<tr>
<td>TC-TRIMMER</td>
<td>CERAMIC</td>
</tr>
<tr>
<td>CAPACITOR</td>
<td></td>
</tr>
<tr>
<td>1~3</td>
<td>Si</td>
</tr>
<tr>
<td>DIODE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ge</td>
</tr>
<tr>
<td>MICA</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Zener</td>
</tr>
<tr>
<td>22~24</td>
<td>B2PY</td>
</tr>
<tr>
<td>25,26</td>
<td>A4P3</td>
</tr>
<tr>
<td>L-INDUCTOR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RF CHOKE</td>
</tr>
<tr>
<td>2</td>
<td>RF CHOKE</td>
</tr>
<tr>
<td>T-TRANSFORMER</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>ANT. COIL A</td>
</tr>
<tr>
<td>102</td>
<td>RF COIL A</td>
</tr>
<tr>
<td>103</td>
<td>MIX COIL A</td>
</tr>
<tr>
<td>104</td>
<td>ANT. COIL B</td>
</tr>
<tr>
<td>105</td>
<td>RF COIL B</td>
</tr>
<tr>
<td>106</td>
<td>MIX COIL B</td>
</tr>
<tr>
<td>107</td>
<td>ANT. COIL C</td>
</tr>
<tr>
<td>108</td>
<td>RF COIL C</td>
</tr>
<tr>
<td>109</td>
<td>MIX COIL C</td>
</tr>
<tr>
<td>110</td>
<td>OSC COIL</td>
</tr>
<tr>
<td>J-JACK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PIN CONNECTOR</td>
</tr>
<tr>
<td>2</td>
<td>PIN CONNECTOR</td>
</tr>
<tr>
<td>5,4</td>
<td>CRYSTAL SOCKET</td>
</tr>
<tr>
<td>RF AMP UNIT</td>
<td></td>
</tr>
<tr>
<td>1396(A~Z) RF AMP BOARD</td>
<td></td>
</tr>
<tr>
<td>VR-POTentiometer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 φ</td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
</tr>
<tr>
<td>Q-FET</td>
<td>3SK35</td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>56Ω</td>
</tr>
<tr>
<td>12</td>
<td>100Ω</td>
</tr>
<tr>
<td>6</td>
<td>150Ω</td>
</tr>
<tr>
<td>9</td>
<td>220Ω</td>
</tr>
<tr>
<td>7</td>
<td>1.8KΩ</td>
</tr>
<tr>
<td>4</td>
<td>22KΩ</td>
</tr>
<tr>
<td>11</td>
<td>10KΩ</td>
</tr>
<tr>
<td>2,3,5,8,10,11,12</td>
<td>50WV</td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
</tr>
<tr>
<td>6</td>
<td>0.5PF</td>
</tr>
<tr>
<td>4</td>
<td>5PF</td>
</tr>
<tr>
<td>7,8,9</td>
<td>66PF</td>
</tr>
<tr>
<td>1</td>
<td>100PF</td>
</tr>
<tr>
<td>CERAMIC DISC</td>
<td></td>
</tr>
<tr>
<td>2,3,5,10,11,12</td>
<td>50WV</td>
</tr>
<tr>
<td>VC-VARIABLE CAPACITOR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C-332-A</td>
</tr>
<tr>
<td>T-TRANSFORMER</td>
<td>BPF COIL</td>
</tr>
<tr>
<td>111</td>
<td>BPF COIL</td>
</tr>
<tr>
<td>112</td>
<td>BPF COIL</td>
</tr>
<tr>
<td>113</td>
<td>BPF COIL</td>
</tr>
<tr>
<td>MIX & N.B UNIT</td>
<td></td>
</tr>
<tr>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td>1251(A~Z)</td>
</tr>
<tr>
<td>IF UNIT</td>
<td></td>
</tr>
<tr>
<td>Q-TRANSISTOR</td>
<td>25C372Y</td>
</tr>
<tr>
<td>1251(A~Z) IF BOARD</td>
<td></td>
</tr>
<tr>
<td>1351(A~Z) MIX & N.B BOARD</td>
<td>4,5</td>
</tr>
<tr>
<td>D-Diode</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>15.715</td>
<td>G6</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
</tr>
<tr>
<td>14</td>
<td>½W</td>
</tr>
<tr>
<td>X-F-Crystal Filter</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>AM</td>
</tr>
<tr>
<td>3</td>
<td>CW</td>
</tr>
<tr>
<td>R-Resistor</td>
<td>VR-Potentiometer</td>
</tr>
<tr>
<td>7.8,18</td>
<td>½W</td>
</tr>
<tr>
<td>12</td>
<td>½W</td>
</tr>
<tr>
<td>6</td>
<td>½W</td>
</tr>
<tr>
<td>37</td>
<td>½W</td>
</tr>
<tr>
<td>14,20</td>
<td>½W</td>
</tr>
<tr>
<td>15,21</td>
<td>½W</td>
</tr>
<tr>
<td>2</td>
<td>½W</td>
</tr>
<tr>
<td>22,23,24,27,29</td>
<td>½W</td>
</tr>
<tr>
<td>4,3,19,24~26,28</td>
<td>½W</td>
</tr>
<tr>
<td>1,9</td>
<td>½W</td>
</tr>
<tr>
<td>91,10,36,38</td>
<td>½W</td>
</tr>
<tr>
<td>2931,3538</td>
<td>½W</td>
</tr>
<tr>
<td>C-Capacitor</td>
<td>TC-Trimmer Capacitor</td>
</tr>
<tr>
<td>VR-Potentiometer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10φ</td>
</tr>
<tr>
<td>2</td>
<td>10φ</td>
</tr>
<tr>
<td>4</td>
<td>TV-245</td>
</tr>
<tr>
<td>AF Unit</td>
<td>PB-Printed Circuit Board</td>
</tr>
<tr>
<td>Q-Transistor & IC</td>
<td>1~4</td>
</tr>
<tr>
<td>5</td>
<td>AN214</td>
</tr>
<tr>
<td>D-Diode</td>
<td>Zener</td>
</tr>
<tr>
<td>X-Crystal</td>
<td>X-Crystal</td>
</tr>
<tr>
<td>R-Resistor</td>
<td>3,10</td>
</tr>
<tr>
<td>17</td>
<td>¼W</td>
</tr>
<tr>
<td>12</td>
<td>¼W</td>
</tr>
<tr>
<td>19</td>
<td>¼W</td>
</tr>
<tr>
<td>4,7</td>
<td>½W</td>
</tr>
<tr>
<td>10KΩ</td>
<td>5</td>
</tr>
<tr>
<td>15KΩ</td>
<td>16</td>
</tr>
<tr>
<td>100KΩ</td>
<td>2.8</td>
</tr>
<tr>
<td>BFO & Reg Unit</td>
<td>PB-Printed Circuit Board</td>
</tr>
<tr>
<td>PB-Printed Circuit Board</td>
<td>BFO & Reg Board</td>
</tr>
<tr>
<td>Q-Transistor</td>
<td>C-Capacitor</td>
</tr>
<tr>
<td>1~3</td>
<td>2SC372Y</td>
</tr>
<tr>
<td>4</td>
<td>MFC-0034A</td>
</tr>
<tr>
<td>D-Diode</td>
<td>8</td>
</tr>
<tr>
<td>1,3~6</td>
<td>Si</td>
</tr>
<tr>
<td>2</td>
<td>50WV</td>
</tr>
<tr>
<td>X-Crystal</td>
<td>3181.5kHz</td>
</tr>
<tr>
<td>2</td>
<td>HC-6/U</td>
</tr>
<tr>
<td>3</td>
<td>HC-6/U</td>
</tr>
<tr>
<td>R-Resistor</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>50WV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>50WV</td>
<td>0.2μF</td>
<td></td>
</tr>
<tr>
<td>17, 18</td>
<td>16WV</td>
<td>10μF</td>
<td></td>
</tr>
<tr>
<td>13, 15</td>
<td>16WV</td>
<td>22μF</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16WV</td>
<td>100μF</td>
<td></td>
</tr>
<tr>
<td>TC-TRIMMER CAPACITOR</td>
<td>16WV</td>
<td>220μF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CERAMIC</td>
<td>50PF</td>
<td></td>
</tr>
<tr>
<td>L-INDUCTOR</td>
<td>RFC</td>
<td>4mH</td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-SWITCH</td>
<td>SA-119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFO UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHASSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>CERAMIC</td>
<td>20PF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC-VARIABLE CAPACITOR</td>
<td>BS240</td>
<td>DIPPED MICA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC-TRIMMER CAPACITOR</td>
<td>AIR TSN-150C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>30PF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10PF x 2</td>
<td></td>
</tr>
<tr>
<td>L-INDUCTOR</td>
<td>OSC COIL</td>
<td>250μH</td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>RFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC BOARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td>2SK19GR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-TRANSISTOR & FET</td>
<td>2SC372Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td>1/4W</td>
<td>100Ω</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/4W</td>
<td>150Ω</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/4W</td>
<td>270Ω</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1/4W</td>
<td>330Ω</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1/4W</td>
<td>8.2kΩ</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/4W</td>
<td>22kΩ</td>
<td></td>
</tr>
<tr>
<td>1, 4</td>
<td>1/4W</td>
<td>100kΩ</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1/4W</td>
<td>1kΩ</td>
<td></td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6, 8</td>
<td>500WV</td>
<td>100PF</td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>500WV</td>
<td>650PF</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>500WV</td>
<td>2000PF</td>
<td></td>
</tr>
<tr>
<td>3, 5, 7, 10</td>
<td>50WV</td>
<td>0.01μF</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NPO 50WV</td>
<td>10PF</td>
<td></td>
</tr>
<tr>
<td>L-INDUCTOR</td>
<td>RFC</td>
<td>250μH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLARI BOARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308(A-Z) CLARI BOARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF TRAP A UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309(A-Z) TRAP BOARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>Value</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td>1/4 W 1.5kΩ</td>
<td>18 WV 10μF</td>
<td></td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
<td>21 18 WV 22μF</td>
<td></td>
</tr>
<tr>
<td>T-TRANSFORMER</td>
<td>0.15m CONVERTER UNIT</td>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td></td>
</tr>
<tr>
<td>123 TRAP COIL</td>
<td>1305(A-Z) 6m BOARD</td>
<td>Q-TRANSISTOR & FET</td>
<td></td>
</tr>
<tr>
<td>IF TRAP B UNIT</td>
<td>1 3SK40M</td>
<td>2 2SK19GR</td>
<td></td>
</tr>
<tr>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td>3 2SC372Y</td>
<td>D-DIODE</td>
<td></td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td>1/4 W 820Ω</td>
<td>Zener WZ090</td>
<td></td>
</tr>
<tr>
<td>X-CRYSTAL</td>
<td>1 HC-25/U 22 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR-POTentiOMETER</td>
<td>1 500ΩB</td>
<td>R-RESISTOR</td>
<td></td>
</tr>
<tr>
<td>17 1/4 W 6.8Ω</td>
<td>7.14-16 1/4 W 100Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 1/4 W 470Ω</td>
<td>8, 13 1/4 W 3.3KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1/4 W 10KΩ</td>
<td>1, 2, 4 1/4 W 56KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5, 12 1/4 W 100KΩ</td>
<td>FM UNIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB-PRINTED CIRCUIT BOARD</td>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
<td></td>
</tr>
<tr>
<td>1269(A-Z)</td>
<td>3 500 WV 2PF</td>
<td>1 500 WV 12PF</td>
<td></td>
</tr>
<tr>
<td>Q-TRANSISTOR & IC</td>
<td>6 500 WV 15PF</td>
<td>4, 11, 9 500 WV 15PF</td>
<td></td>
</tr>
<tr>
<td>5, 12, 13 500 WV 20PF</td>
<td>D-ODe</td>
<td>20 500 WV 30PF</td>
<td></td>
</tr>
<tr>
<td>17 500 WV 60PF</td>
<td>1 500 WV 70PF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 16 500 WV 100Ω</td>
<td>3 500 WV 300PF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-RESISTOR</td>
<td>10 1/4 W 22Ω</td>
<td>6, 7, 8, 14, 15, 18, 19 50 WV 0.01μF</td>
<td></td>
</tr>
<tr>
<td>18 1/4 W 220Ω</td>
<td>2 1/4 W 680Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 1/4 W 470Ω</td>
<td>2 1/4 W 1KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 1/4 W 470Ω</td>
<td>17 1/4 W 22KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 1/4 W 33KΩ</td>
<td>22 1/4 W 47KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14, 15 1/4 W 100KΩ</td>
<td>3 1/4 W 56KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19, 22 1/4 W 330KΩ</td>
<td>28 1/4 W 100Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-CAPACITOR</td>
<td>DIPPED MICA</td>
<td>X-CRYSTAL</td>
<td></td>
</tr>
<tr>
<td>9 500 WV 30PF</td>
<td>1 HC-25/U 38, 666 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 500 WV 150PF</td>
<td>R-RESISTOR</td>
<td>15, 18, 19 1/4 W 100Ω</td>
<td></td>
</tr>
<tr>
<td>6 500 WV 200PF</td>
<td>6, 10 1/4 W 220Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7, 8 500 WV 300PF</td>
<td>14 1/4 W 1KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERAMIC DISC</td>
<td>14 1/4 W 8.13, 17 1/4 W 3.3KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14, 16 50 WV 0.001μF</td>
<td>17 1/4 W 3.7, 11 1/4 W 10KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17, 20 50 WV 0.001μF</td>
<td>12 1/4 W 15KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 11–13, 15, 18, 23 50 WV 0.001μF</td>
<td>19, 22 1/4 W 56KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W MYLAR</td>
<td>5, 23 1/4 W 100Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROLYTIC</td>
<td>1/4 W 1μF</td>
<td>C-CAPACITOR</td>
<td></td>
</tr>
<tr>
<td>1, 3 10 WV</td>
<td>DIPPED MICA</td>
<td>25 16 WV 4.7μF</td>
<td></td>
</tr>
<tr>
<td>25 16 WV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 W V</td>
<td>3PF</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>500 W V</td>
<td>8PF</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>500 W V</td>
<td>10PF</td>
<td></td>
</tr>
<tr>
<td>2, 6, 7, 10, 17</td>
<td>500 W V</td>
<td>20PF</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>500 W V</td>
<td>30PF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CERAMIC DISC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>50 W V</td>
<td>0.001 μF</td>
<td></td>
</tr>
<tr>
<td>3, 5, 8, 9, 13, 14, 16, 19</td>
<td>50 W V</td>
<td>0.01 μF</td>
<td></td>
</tr>
</tbody>
</table>

T-TRANSFORMER

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>ANT COIL</td>
</tr>
<tr>
<td>202 ~ 206</td>
<td>BPF COIL</td>
</tr>
<tr>
<td>207</td>
<td>OUTPUT COIL</td>
</tr>
<tr>
<td>208</td>
<td>OSC COIL</td>
</tr>
<tr>
<td>209</td>
<td>BUFF COIL</td>
</tr>
<tr>
<td>210</td>
<td>AMP COIL</td>
</tr>
</tbody>
</table>